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Key Questions Answered by Sensitivity 
Analysis

• Sensitivity analysis can answer the following key 
questions:

» What is the impact of changes in input values on model 
output?

» How can variation in output values be apportioned 
among model inputs?

» What are the ranges of inputs associated with best/worst 
outcomes?

» What are the key controllable sources of variability?
» What are the critical limits (e.g., emission reduction 

target for a risk management strategy)?
» What are the key contributors to the output uncertainty?



Research Background:
Comparison and Evaluation of Sensitivity Analysis 

Methods for Food Safety Risk Models
• June 2001 workshop to review sensitivity analysis methods and 

recommend specific criteria for evaluation of methods
• Applied approximately one dozen sensitivity analysis methods 

to multiple food safety risk assessment models:
» Vibrio Paraheamolyticus
» Listeria monocytogenes in Ready-to-Eat foods
» E. coli O157:H7 in ground beef

• Publication of literature review and “white papers” as a special 
section of Risk Analysis (June 2002)

• March 2003 workshop to review results and propose priorities 
for development of a guidance document for practitioners

• Report on evaluation of methods (www.ce.ncsu.edu/risk)
• Guidance on use of methods (www.ce.ncsu.edu/risk)

http://www.ce.ncsu.edu/risk
http://www.ce.ncsu.edu/risk


Research Background:
Comparison and Evaluation of Sensitivity Analysis 

Methods for Exposure Models
• Based on results for food safety risk models, identified seven of the 

most practical or powerful sensitivity analysis
• Evaluated their applicability to exposure models based on case 

studies with a simplified Stochastic Human Exposure and Dose 
Simulation (SHEDS) model

• Two draft final reports by Mokhtari and Frey
– www4.ncsu.edu/~frey/  
– Volume 1:  Review of Available Methods for Conducting Sensitivity 

and Uncertainty Analysis in Probabilistic Models
– Volume 2:  Evaluation and Recommendation of Methodology for 

Conducting Sensitivity Analysis in Probabilistic Models
• Journal paper:

– Mokhtari, A., H.C. Frey, and J. Zheng, “Evaluation and 
recommendation of sensitivity analysis methods for application to 
Stochastic Human Exposure and Dose Simulation (SHEDS) 
models,” Journal of Exposure Science and Environmental 
Epidemiology, 16(6):491-506 (Nov 2006)



• Objectives:
» To evaluate selected sensitivity analysis methods 

based on practical case studies with a complex 
model

» To present and interpret sensitivity analysis results 
in a probabilistic framework that includes a temporal 
dimension

Application of Sensitivity Analysis Methods to a 
Probabilistic Environmental Human Exposure Model



Examples of Sensitivity Analysis Methods 
for Probabilistic Models

– Nominal range sensitivity analysis
– Differential sensitivity analysis

–Pearson or Spearman correlation coefficients
–Sample or Rank regression analysis
–Analysis of variance
– Classification and regression tree

–Fourier Amplitude Sensitivity Test
–Sobol’s Method
– Response Surface
– Mutual Information Index
– Scatter plots
– Conditional sensitivity analysis



Key Characteristics of the SHEDS-
Pesticides Model

• Simplified SHEDS model used as a testbed
• Based on the SHEDS-Pesticides model

–Non-linearity and interactions between inputs
–Saturation points
–Different input types (continuous versus 

categorical)
–Aggregation and carry-over effects
–Inputs with different sampling time scales (e.g., 

monthly versus daily inputs)



Scenario Assumptions for the Simplified 
SHEDS-Pesticides Model

• One-stage Monte Carlo simulation
• Inter-individual variability
• Exposure duration of one month
• One application of pesticides at the beginning of the 

month
• Randomly generated exposure times corresponding 

to different pathways



Case Study Scenario

• Inter-individual variability in exposures
• Children between 5 and 10 
• Total exposure from inhalation, ingestion, and dermal 

routes
• Three temporal scenarios:

– Scenario I: Daily total exposure
– Scenario II: Rate of change of exposure from one 

day to the next
– Scenario III: Cumulative Exposure 



Schematic Diagram of the Simplified 
SHEDS-Pesticides Model



Example input Assumptions for the Simplified 
SHEDS-Pesticides Model: Inhalation Pathway

26 probabilistic inputs in total



Model Application

• Each sensitivity analysis method applied to 
each time step (i.e., day)

• Ranking - comparative order of importance of 
an input on a given day when sorted according 
to sensitivity indices

• Rank = “1” for input with the highest sensitivity 
index



Example Model Output:  
Daily Exposure for Selected Individuals
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Example Model Output:  Incremental Change in 
Daily Exposure for Selected Individuals
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Example Model Output:  Cumulative (Temporal) 
Exposure for Selected Individuals
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Example Model Output:  Inter-Individual 
Variability in Exposure Over 30 Days
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Pearson and Spearman 
Correlation Coefficients

• Pearson - sample 
• Spearman - rank
• Applicable to results of a Monte Carlo analysis
• Correlation coefficients can range from -1 to +1 
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Pearson (Sample) and Spearman (Rank) 
Correlation Coefficients (continued)

• Advantages:
– Relatively easy to compute
– Can be applied to two-dimensional probabilistic 

frameworks (correlations for variability, correlations 
for uncertainty)

– Readily available in many commercial software 
packages

• Disadvantages:
– Pearson correlation - inaccurate for nonlinear models 
– Spearman correlation - inaccurate for non-monotonic 

models
– Does not capture interactions among multiple inputs



Example Application of Pearson and Spearman 
Correlation Coefficients to the Simplified SHEDS Model

 (a)  Scenario I: Daily Exposure
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Example Application of Pearson and Spearman 
Correlation Coefficients to the Simplified SHEDS Model

Output:  Inter-Individual Variability in Daily Exposure
Input:  Fraction of Chemicals Available for Transfer (Daily)

 (a)  Scenario I: Daily Exposure

0

0.2

0.4

0.6

0 5 10 15 20 25 30

Time (day)

|C
or

re
la

tio
n 

C
oe

ffi
ci

en
t|

Pearson
Spearman



Example Application of Pearson and Spearman 
Correlation Coefficients to the Simplified SHEDS Model

Output:  Inter-Individual Variability in Cumulative Exposure

Input:  Fraction 
of Chemicals 
Available for 
Transfer (Daily)
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Fourier Amplitude Sensitivity Test (FAST)

• FAST is a variance-based “global sensitivity analysis”
method

• FAST can identify the contribution of individual inputs 
to the expected value of the output variance

• FAST does not assume a specific functional 
relationship

• FAST can evaluate sensitivities based on varying only 
one input or all inputs simultaneously

• FAST provides insights regarding main and total 
effects of inputs



Definition of Main and Total Effects

• Main effect provides insights regarding 
contribution of each input to the output variance

• Total effect of an input is defined as the sum of all 
effects involving that input, including interaction 
effects with other inputs

• Example of total effect of X1 for a case with three 
inputs:

321312111 XXXXXXXXX SSSSST ×××× +++=

Main effect of X1 Interaction effects involving X1



Transformation Functions

• Application of FAST involves defining a set of 
transformation functions and frequencies for 
model inputs:

• As s varies, all inputs vary simultaneously at rates 
according to their assigned frequencies

• Frequencies for each input must be distinct and 
incommensurate

)][sin( sGx iii ω=
i = 1, 2, …, n; n = number of model inputs

Gi = Transformation function for ith input
ωi = frequency for ith input
s  = scalar variable   

)(),...,,( 21 sfxxxf n →



Example of Numerical Samples of Two Uniform 
Distributions:  Monte Carlo vs. FAST



Fourier Amplitude Sensitivity Test (FAST) 
(continued)

• Advantages:
– Model independent
– Works for monotonic and non-monotonic models
– The evaluation of sensitivity estimates for each input is 

based on just a single set of runs 
• Disadvantages:

– Computationally complex
– Requires an alternative sampling scheme in place of 

Monte Carlo
– The reliability of the FAST method can be poor for 

discrete inputs 
– Current software tools for FAST are not readily 

amenable to application to the complex risk 
assessment models 



Example Application of FAST to the Simplified SHEDS 
Model

(a) Scenario I: Daily Exposure
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Example Application of FAST to the Simplified SHEDS 
Model

Output:  Inter-Individual Variability in Daily Exposure
Input:  Fraction of Chemicals Available for Transfer (Daily)

(a) Scenario I: Daily Exposure
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Sobol’s Method

• Variance-based “global sensitivity analysis”
method

• Contribution of individual inputs to the expected 
value of the output variance

• Does not assume a specific functional relationship
• Main effects, total effects, and any order of 

interaction effects for inputs



Sensitivity Indices Based on the Sobol’s 
Method

• A Monte Carlo procedure is used for the 
estimation of the partial variances, and thus, 
sensitivity indices

• Example sensitivity indices for main and total 
effects of inputs:
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The Monte Carlo Procedure for Estimation 
of Sensitivity Indices

• Two input sample matrices M1 and M2 are generated (n is 
the sample size and k is the number of inputs):

• Parameters in the previous equations are estimated as:
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Sobol’s Method (continued)

• Advantages:
– Sobol’s method can cope with both nonlinear and non-

monotonic models
– Sobol’s method can be applied to categorical inputs

• Disadvantages:
– Computationally intensive
– The ease of application depends on the complexity of 

the model
– There is no readily available software that facilitates 

application of Sobol’s method 



Example Application of Sobol’s Method to the Simplified 
SHEDS Model

(a) Scenario I: Daily Exposure
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Example Application of Sobol’s Method to the Simplified 
SHEDS Model

(a)  Scenario I: Daily Exposure
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Contribution of Inputs to the Output Variance 
(Scenario I) Based on Sobol’s Method

AM = Mass of applied pesticide
BW   = Body washing removal efficiency
DR = Fraction of pesticides that dissipates daily
FTR = Fraction of pesticide available for transfer from surface to body or hands
WB = Body weight



Quantitative Comparison of Sensitivity 
Analysis Methods for Selected Inputs

Inputs
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Key Findings Based on Comparison of 
Selected Methods

• Variance-based methods provided lower mean 
ranks for the most sensitive inputs.

• The range of ranks for each input was typically 
narrower for the variance-based methods 

• All methods provided similar results for 
insignificant inputs

• Sobol’s method and FAST produced similar 
rankings, especially for important inputs.



Qualitative Comparison of Sensitivity 
Analysis Methods
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Conclusions

• Model independent methods are preferable
• Most methods can screen unimportant inputs
• Simple or convenient methods may fail to identify 

important inputs (e.g., because of interactions)
• Application to “2D” variability and uncertainty is 

possible (see food safety risk model case studies)
• Sensitivity differs at different time scales, which 

implies a need to match the time scale of the 
exposure analysis, sensitivity analysis, and 
assessment endpoint



Recommendations

• Sobol’s method and FAST are attractive methods for 
apportioning the output variance.

• However, these are computationally intensive.
• Use a tiered approach:

– a less computationally intensive and more readily available 
method can be applied for the purpose of determining which 
inputs are not important.

– Unimportant inputs based on the tiered approach can be set 
to point estimates. 

– Subsequently, a more computationally intensive but also 
more accurate method, such as Sobol’s method or FAST, 
can be applied to distinguish among the remaining inputs. 
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